Introduction
The FLTD Continuous Thermocouple® is a temperature measuring sensor, which takes the form of a thin flexible cable. Like its predecessor CT°C®, it is a heat-seeking thermocouple, using similar thermo-electric techniques, but designed especially to reveal changes in the narrow band of temperatures only a few degrees above normal ambient.

FLTD is able to measure the maximum temperature detected between its two ends, then track any increase, even if the position of the “hot-spot” changes. Such ability offers an immense opportunity to prevent loss due to overheat, in commercial as well as industrial applications.

This advanced form of detector permits the design of overheat warning systems, which are highly sensitive to early departures from normal, yet exhibit an extraordinary freedom from false alarms.

Operating Principle
A Circuit formed from two dissimilar wires joined at both ends, develops an emf (voltage) proportional to the difference in the two junction temperatures. This is the long established Thermo-electric effect, and today the junctions are known as the “Measuring Junction”. See diagrams below.

Although an FTLD sensor performs like a normal thermocouple, the measuring junction is not formed by directly joining the two wires. More remarkably, the Measuring Junction is not fixed, but becomes concentrated at the hottest point within the insulation resistance when subjected to an increase in temperature.

The nature of the insulation causing this phenomenon is such that the voltage developed between the two wires always relates to the highest temperature along the cable sheath.

Features
- Stable
- Moisture resistant
- Sensor needs no power
- Virtually free from false alarms
- Ambient temperature compensation
- Early warning of abnormal temperature
- Alarm point unaffected by cold weather
- Simple apparatus (Hazardous Area)
- User adjustable alarm settings
- No site calibration

Specification
<table>
<thead>
<tr>
<th>Advantage</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-generating temperature sensor</td>
<td>Protective sheath - Dual layer PTFE</td>
</tr>
<tr>
<td>Measures maximum temperature</td>
<td>Measuring element - Type “K” thermocouple - insulated</td>
</tr>
<tr>
<td>Initial site temperature check not needed</td>
<td>Sensor output - Millivolts DC related to maximum cable temperature</td>
</tr>
<tr>
<td>Visible operating status</td>
<td>Normal operating range - -29 to 80°C (-20 to 176°F)</td>
</tr>
<tr>
<td>Optional rate of change alarm (same unit)</td>
<td>Survival range - -40 to 200°C (-40 to 392°F)</td>
</tr>
<tr>
<td>Alarm settings directly in degrees</td>
<td>EMI protection - Twisted cores & metallised tape tube</td>
</tr>
<tr>
<td>Alarms can be set before installation</td>
<td>Insulation - Glass fibre impregnated with special insulating material</td>
</tr>
<tr>
<td>Interchangeable sensors</td>
<td>Minimum bend radius - 40 mm</td>
</tr>
<tr>
<td>Sensor not microphonic</td>
<td>Construction - Twisted pair, NTC insulation, EMI screen, outer sheath</td>
</tr>
<tr>
<td>System check facility in sub zero band</td>
<td>Sizes - 3.5mm OD approx. Cut to length as required</td>
</tr>
<tr>
<td>Alarm units for mains power or low voltage</td>
<td>Minimum length - 15 meters</td>
</tr>
<tr>
<td>Sensor need not be near alarm unit</td>
<td>Hazardous area use - Measuring element is “Simple Apparatus”</td>
</tr>
</tbody>
</table>

FTLD® - System Operating Principle

Thermo-electric phenomenon discovered by Seebeck in 1821 and used to this day for industrial temperature measurement.

By measuring both the sensor output and the temperature at its own terminals the instrument is able to compute the hot spot temperature and make automatic compensation for ambient temperature changes.
The Application

Temperature rise due to unrestrained release of physical or chemical energy, is a regular cause of serious loss in industry, commerce and everyday life. It is responsible for countless incidents, the financial consequences of which range from minor to catastrophic.

One common example of temperature rise ending in loss, is combustion. Some others are wear, distortion, fracture, melting, drying, and seizure.

Breakdown at temperatures well below the boiling point of water, is an area of particular concern - one where losses from shutdown can be enormous. For example, temperatures at which ordinary heat detectors remain dormant, can destroy the electronics crucial to computers, communications and data handling equipment.

For many years point type temperature detectors of various types, including conventional thermocouples, have been used to monitor processes and plant risk from heat induced damage. In almost every case the inevitable compromise between numbers (cost), and detector coverage (efficiency), has defeated the exercise.

FTLD offers a very powerful and cost effective alternative to any currently available system, by eliminating the question of where to place the sensor; by constantly monitoring maximum temperature in the area covered; and by possessing such stability, that false alarms are virtually non-existent.

Very often, a loss-inducing condition begins with temperature rising very slowly above normal for the installation at risk. This is the time when corrective action has the greatest chance of success. An FTLD system capitalizes on this opportunity by alerting operating personnel to the onset of a dangerous condition, some time before the main danger temperature alarm is initiated.

Areas of Risk

Storage & Maintenance
- Foodstuffs, Beverages & Medicines
- Wines & Spirits
- Coal, Gas & Oil
- Fabric, Timber & Building Materials
- Clothing
- Paper & Board
- Aircraft, Ship & Vehicle Maintenance

Communications
- Telephone Exchanges
- Computer Installations
- Radio, Radar & Television Stations
- Television & Film Studios
- Data & Signal Cable Ducts
- Instrumentation & Control Rooms
- Civil & Defense Facilities

Services
- Food Production & Supply
- Manufacturing Facilities
- Rail, Road & Cable Tunnels
- Fuel, Water & Sewage Treatment
- Airports, Seaports, Rail & Bus Stations
- Hospitals, Schools & Universities
- Shopping, Sports & Leisure Centers

Materials Handling
- Oil & Gas Pumps & Valves
- Coal Conveyors & Silos
- Electricity Sub-stations
- Air, Sea & Land Vehicles
- Agriculture
- Ship, Aircraft & vehicle Loading
- Goods & Mail Distribution

ASK ABOUT OUR HIGH TEMPERATURE VERSION < 1800°F.